ON THE BIPYRIDYL FORMATION IN REACTIONS OF 2-CHLOROPYRIDINE DERIVATIVES WITH POTASSIUM AMIDE IN LIQUID AMMONIA*

Johannis W. STREEF^a, Henk C. van der PLAS^a and Sybolt HARKEMA^b

 ^a Laboratory of Organic Chemistry, Agricultural University Wageningen, 6703 HB Wageningen, The Netherlands
 ^b Faculty of Chemical Technology, Technical University of Twente, Postbox 217, 7500 AE Enschede, The Netherlands

> Received October 15, 1990 Accepted December 7, 1990

Dedicated to Dr Miroslav Protiva on the occasion of his 70th birthday.

In the reaction of 2,6-dichloropyridine and 2,6-dichloro-3-phenylpyridine with potassium amide in liquid ammonia at -70° C, formation of derivatives of 4,4'-bipyridyl and 3,4'-bipyridyl is observed. The 4,4' coupling products are far in excess to the 3,4' coupling products. When the reaction is carried out at -70° C in the presence of potassium permanganate, the corresponding 4-aminopyridines are the main products. 2-Chloro-6-phenoxypyridine is very unreactive with this aminating reagent at -70° C as well as -33° C, but in the presence of potassium permanganate at -33° C 4-amino-2-chloro-6-phenoxypyridine is formed in fair yield. The mechanisms of the formation of the bipyridyls and 4-aminopyridines are presented.

In several papers we described the reactivity of some (3-substituted) 2,6-di-X-pyridines (X = Cl, Br) towards potassium amide in liquid ammonia at -33° C. In some cases ring transformation took place leading to the formation of 4-amino-pyrimidine derivatives in modest yields¹⁻³. This ring transformation has been proposed to be initiated by the addition of the amide ion at the C-(4) position of the pyridine ring, followed by ring opening, involving fission of the C(3)—C(4) bond, and a subsequent recyclisation to the pyrimidine system (ANRORC-mechanism).

In this paper we report on the reaction of 2,6-dihalogenopyridines when treated with potassium amide in liquid ammonia at -70° C, instead of -33° C.

RESULTS AND DISCUSSION

When a solution of 2,6-dichloropyridine (I) in 1,2-dimethoxyethane (DME) was added to potassium amide in liquid ammonia at -70° C a deep purple color arose,

^{*} For a previous paper in these series see ref.³.

being in contrast to the dark brown color obtained when the reaction is carried out at-33°C. After quenching the reaction mixture at -70°C with ammonium chloride and work-up of the reaction mixture (see Experimental) we were able to isolate by

Scheme 1

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

preparative TLC 2,2',6,6'-tetrachloro-4,4'-bipyridyl (VI), 2,2'6-trichloro-4,4'-bipyridyl (VII) and 2,2',6,6'-tetrachloro-3,4'-bipyridyl (VIII) in modest yields (see Scheme 1 and Table I). The 4,4' coupling products are far in excess to the 3,4' coupling products. Also some starting material could be recovered. 4-Amino-2-benzyl-pyrimidine, a possible product of a ring transformation reaction could not be detected in the reaction mixture.

Bipyridyl formation in reactions of halopyridines with strong base is not unprecedented. Reaction of 3-fluoropyridine with potassium amide in liquid ammonia leads to fluorinated bipyridyls; only to a limited extent nucleophilic substitution at position 3 took place⁴.

The formation of VI, VII and VIII can be explained as follows: I is partly deprotonated at position 4 as well as at position 3 to give the anions II and III, respectively. Both σ -anions add to the neutral species I, yielding the anionic σ -adducts IV and V, respectively. Hydride removal from IV and V leads to products VI and VIII while VII is formed by an overall-chloride elimination. We observed that when the reaction mixture obtained at -70° C was treated with the oxidizing reagent potassium

Substr.	mmol	ml DME	ml NH ₃	eq. KNH ₂	React. temp. °C	React. time min	mmol K MnO ₄		Isolated Yi	compounds eld, %
I	7.5	10	150	33	70	15		I VI VII VIII	25-30 10-15 7 10-13	
Ι	7.6	10	150	37	70	15	25	I VI X	6-10 3-5 25-30	VII and VIII detected
XI	7.5	10	150	34	70	15	_	XI XVI XVII XVIII	15 - 20 10 - 20 6 10 - 15	
XI	7.5	10	150	35	- 70	15	25	XI XVI XX	3 - 10 15 - 20 16 - 20	XVII and XVIII detected
XXI	5.1	8	50	27	- 33	15		XXI	85	
XXI	5.1	8	50	27	-33	15	20	XXIII XXIV	60—70 10	

 TABLE I

 Details on the preparative procedure

TABLE II

Table of positional parameters and their estimated standard deviations for compound XVII. Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as:

 $(4/3)^* [a^{2*}B(1, 1) + b^{2*}B(2, 2) + c^{2*}B(3, 3) + ab(\cos \gamma)^* B(1, 2) + ac(\cos \beta)^* B(1, 3) + bc(\cos \alpha)^* B(2, 3)]$

Atom	<i>x</i>	У	Z	B(A2)	
Cl1	0.81650(6)	0.05586(8)	0.70591(9)	4.03(2)	
Cl2	1.61247(8)	0.61581(9)	0.8452(1)	5.36(2)	
Cl3	1.20955(9)	0.6496(1)	1.0392(1)	6.05(2)	
N4	1.4004(2)	0.6104(2)	0.9231(3)	3.69(6)	
C5	1.4546(3)	0.5380(3)	0.8363(3)	3.20(7)	
C6	1.3929(2)	0.4108(3)	0.7426(3)	2.76(6)	
C7	1.2635(2)	0.3553(3)	0.7463(3)	2.72(6)	
C 8	1.2066(3)	0.4280(3)	0.8386(3)	3.39(7)	
С9	1.2792(3)	0.5545(3)	0.9224(3)	3.76(8)	
C10	1.4606(2)	0.3377(3)	0.6457(3)	2.85(7)	
C11	1.5311(3)	0.2810(3)	0·6998(3)	3.91(8)	
C12	1.5872(3)	0.2063(4)	0.6099(4)	4·96(9)	
C13	1.5737(3)	0.1859(4)	0.4627(4)	5.2(1)	
C14	1.5055(3)	0.2433(3)	0.4073(4)	4.65(9)	
C15	1.4500(3)	0.3189(3)	0.4972(3)	3·46(7)	
C16	1.1883(2)	0.2116(3)	0.6561(3)	2.71(6)	
C17	1.2030(3)	0.1017(3)	0.7201(3)	3.20(7)	
C18	1.1225(3)	0.0767(3)	0.8432(3)	3·27(7)	
N19	1.0120(2)	0.0789(2)	0.8413(3)	3·27(6)	
C20	0.9791(2)	0.1148(3)	0.7242(3)	2.98(7)	
C21	1.0528(2)	0.1842(3)	0.6347(3)	2.77(6)	
N22	1.1639(2)	0.0487(3)	0.9532(3)	4.49(7)	
C23	1.0165(3)	0.2357(3)	0.5203(3)	3.16(7)	
C24	0.9292(3)	0.2953(3)	0.5413(4)	4.43(8)	
C25	0.8979(3)	0.3432(4)	0.4333(5)	6.0(1)	
C26	0.9503(4)	0.3330(4)	0.3049(4)	6.4(1)	
C27	1.0374(4)	0.2772(4)	0.2815(4)	5.5(1)	
C28	1.0714(3)	0.2306(3)	0.3889(4)	4.03(8)	
029	0.4283(4)	0.0964(5)	0.9695(6)	8.6(2)	
C30	0.4647(5)	0.0045(5)	0.9435(7)	10.0(2)	
H8	1.125(2)	0.390(2)	0.842(2)	1.9(5)*	
H11	1.537(2)	0.295(2)	0.801(3)	2·9(6)*	
H12	1.631(3)	0.166(3)	0.650(3)	5·9(8) *	
H13	1.613(3)	0.142(3)	0.399(3)	6·0(8) *	
H14	1.499(3)	0.226(3)	0.303(3)	5·4(8)*	
H15	1.402(2)	0.357(2)	0.457(3)	3·2(6)*	
H16	1.217(2)	0·20б(2)	0.569(2)	1.6(5)*	

2-Chloropyridine Derivatives

TABLE II

(Continued)

 Atom	<i>x</i>	У	Z	B(A2)
H17A	1.181(2)	0.025(3)	0.653(3)	3.6(6)*
H17B	1.287(2)	0.122(2)	0.746(3)	2.9(6)*
H22A	1.115(3)	0.022(3)	1.017(3)	5.0(8)*
H22B	1.234(3)	0.049(3)	0.944(3)	4.4(7)*
H24	0.898(2)	0.306(3)	0.629(3)	3.7(6)*
H25	0.837(3)	0.377(3)	0.448(4)	6.8(9)*
H26	0.924(3)	0.362(4)	0.239(4)	7(1)*
H27	1.068(3)	0.265(3)	0.193(4)	5·9(8) *
H28	1.127(2)	0.189(2)	0.367(3)	3.1(6)*

permanganate before quenching with ammonium chloride, 4-amino-2,6-dichloropyridine (X) was formed as main product; compound VI was only isolated in a small yield and the compounds VII and VIII could only be detected in trace amounts. All these results can be understood when we assume that in the liquid ammonia/ potassium amide an equilibrium mixture of the anions II and III and adduct IX is present. At -70° C this adduct IX is too unreactive to react further and forms back the starting material I, when quenching the reaction mixture with ammonium chloride; only the anions II and III will react.

However, in the presence of potassium permanganate a fast oxidation of IX into X takes place and shifts the equilibrium of the anions II and III into IX. Oxidation of σ -NH₂ adducts with potassium permanganate is a well-known procedure to obtain amino products and this S_N H substitution reaction has been developed into a useful synthesis of amino heterocycles^{5,6}.

More or less the same observations were made with 2,6-dichloro-3-phenylpyridine (XI). When a solution of XI in 1,2-dimethoxyethane was reacted with a solution of potassium amide in liquid ammonia at -70° C for 15 min and the reaction mixture was worked-up the 4,4'-bipyridyls XVI and XVII were obtained together with the 3,4'-bipyridyl XVIII (Scheme 2). Their structures were assigned by IR, ¹H and ¹³C NMR spectroscopy. Supporting evidence was obtained by crystal structure analysis of compound XVII. No evidence was found for the presence of a pyrimidine derivative. In the presence of potassium permanganate besides XVI 4-amino-2,6-dichloro-3-phenylpyridine (XX) was obtained in a modest yield. Also in these reactions we suppose the intermediacy of the σ -anions XII and XIII and the σ -adduct XIX. In the absence of potassium permanganate XIX does not react further and the σ -anions react into the bipyridyl σ -adducts XIV and XV. Via these σ -adducts the

products XVI, XVII and XVIII are formed. It is assumed that pyridone XVIII is formed during work-up. During work-up σ -adduct XIX forms back the starting material XI.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

Extension of this study to the behaviour of 2-chloro-6-phenoxypyridine (XXI) in potassium amide/liquid ammonia showed that at -70° C as well as at -33° C XXI is completely unreactive (Scheme 3). However, when the reaction mixture obtained at -33° C was treated with potassium permanganate 4-amino-2-chloro-6-

TABLE III

Table of general displacement parameter expressions – U's for compound XVII. The form of the anisotropic displacement parameter is: $\exp \left[2 \operatorname{Pl}^{2} \left\{h^{2} a \, 2 \, \mathrm{U}(1, 1) + k^{2} b \, 2 \, \mathrm{U}(2, 2) + l^{2} c \, 2 \, \mathrm{U}(3, 3) + 2hkab \, \mathrm{U}(1, 2) + 2hlac \, \mathrm{U}(1, 3) + 2klbc \, \mathrm{U}(2, 3)\right\}\right]$, where a, b and c are reciprecal lattice constants

Atom	U(1, 1)	U(2, 2)	U(3, 3)	U(1, 2)	U(1, 3)	U(2, 3)
Cil	0.0305(3)	0.0566(4)	0.0692(5)	0.0174(3)	0.0023(3)	0.0194(3)
C12	0.0498(4)	0.0634(5)	0.0743(5)	0.0038(4)	-0·0128(4)	0.0148(4)
Cl3	0.0828(5)	0.0820(5)	0.0625(6)	0.0497(3)	-0·0096(4)	-0·0222(4)
N4	0.054(1)	0.040(1)	0.041(1)	0.0160(9)	0·012(1)	0.001(1)
C5	0.041(1)	0.039(1)	0·0 3 6(1)	0.009(1)	-0.007(1)	0.009(1)
C 6	0.037(1)	0 ∙036(1)	0.029(1)	0.010(1)	0.004(1)	0.009(1)
C 7	0.035(1)	0.035(1)	0.032(1)	0.012(1)	0.004(1)	0.008(1)
C8	0.034(1)	0.047(1)	0.044(2)	0.015(1)	-0·004(1)	0.003(1)
С9	0.057(2)	0.051(1)	0.036(2)	0.026(1)	0.008(1)	0.000(1)
C10	0.027(1)	0.038(1)	0.037(!)	0.005(1)	-0.001(1)	0.011(1)
C11	0.041(1)	0.062(2)	0.046(2)	0.020(1)	-0.003(1)	0.013(1)
C12	0.054(2)	0·076(2)	0.072(2)	0.038(1)	0.002(2)	0.019(2)
C13	0.058(2)	0.072(2)	0.067(2)	0.034(1)	0.018(2)	0.006(2)
C14	0.069(2)	0.063(2)	0.044(2)	0.027(1)	0.015(2)	0.012(2)
C15	0.047(1)	0.044(1)	0.041(2)	0.016(1)	0.002(1)	0.015(1)
C16	0.031(1)	0.035(1)	0.032(1)	0.0102(9)	0.001(1)	0.005(1)
C17	0.033(1)	0.034(1)	0.051(2)	0.011(1)	0.001(1)	0.007(1)
C18	0.037(1)	0.038(1)	0.047(2)	0.011(1)	− 0·003(1)	0.012(1)
N19	0.035(1)	0.046(1)	0.044(1)	0.0160(8)	-0·001(1)	0.012(1)
C20	0.029(1)	0.036(1)	0.046(2)	0.0124(9)	-0.003(1)	0.005(1)
C21	0.033(1)	0.031(1)	0.038(1)	0.0103(9)	0.004(1)	0.004(1)
N22	0.039(1)	0.078(1)	0.061(2)	0.021(1)	0.003(1)	0.032(1)
C23	0.037(1)	0.030(1)	0.046(2)	0.006(1)	-0.010(1)	0.008(1)
C24	0.048(2)	0.052(2)	0.071(2)	0.019(1)	-0.002(2)	0.019(1)
C25	0.059(2)	0.071(2)	0.111(3)	0.027(1)	-0·009(2)	0.041(2)
C26	0.084(2)	0.076(2)	0.091(2)	0.022(2)	-0.024(2)	0.043(2)
C27	0.095(2)	0.064(2)	0.049(2)	0.024(2)	-0·010(2)	0·01 9(1)
C28	0.056(2)	0.046(2)	0.050(2)	0.019(1)	-0.004(1)	0.009(1)
O29	0.074(2)	0.093(3)	0.162(4)	0.032(2)	-0·013(3)	0.032(3)
C30	0.120(3)	0.094(3)	0.166(5)	0.053(2)	-0.045(3)	-0.002(3)

-phenoxypyridine (XXIII) could be isolated in a yield of 60-70%, besides a small yield of 4-amino-2-phenoxypyridine (XXIV).

X-Ray Structure Determination of XVII

The crystal structure of XVII was determined by X-ray diffraction. Crystal data: $C_{22}H_{16}N_3Cl_3$; triclinic, space group P1; a = 11.738(1) Å, b = 10.859(1) Å, c =

FIG. 1

The perspective view of the molecule XVII with atom numbering. Atom numbering; atoms O29 and C30 are part of the disordered solvent molecule

= 9.561(2) Å, $\alpha = 103.27(2)^{\circ}$, $\beta = 87.60(1)^{\circ}$, $\gamma = 112.76(1)^{\circ}$; V = 1.092.3(6) Å³; Z = 2; $\rho_{c} = 1.303$ g cm⁻³; $\mu = 4.31$ cm⁻¹.

Reflections were measured in the $\omega/29$ scan mode, using graphite monochromated Mo K_a radiation, on a Philips PW 1100 diffractometer. The structure was solved by direct methods and refined with full-matrix least-squares methods. A total of 2 330 reflections with $F_{\sigma}^2 > 3\sigma(F_{\sigma}^2)$ were used in the refinement. The number of parameters refined was 338 [scale factor, extinction parameter, positional parameters of all atoms and thermal parameters (isotropic for H-atoms, anisotropic for others)]. The final *R*-factors were R = 4.0%, $R_w = 4.1\%$. All calculations were done with SDP (ref.⁷). During the refinement two atoms were found near a symmetry center. The peaks were interpreted as disordered solvent ethanol molecules and included in the refinements. Figure 1 presents the perspective view of the molecule.

TABLE IV

Table of bond distances for compound XVII. Numbers in parentheses are estimated standard deviations in the least significant digits

ł	Atom 1	Atom 2	Distance, Å	Atom 1	Atom 2	Distance, Å
	CII	C20	1.765(3)	C16	H16	0.88(2)
	C12	C5	1.710(3)	C17	C18	1.485(4)
	Cl3	C9	1.741(4)	C 17	H17A	0.89(2)
	N4	C5	1.326(4)	C17	H17B	0.95(3)
	N4	C9	1.312(4)	C 18	N19	1.307(4)
	C5	Сб	1.396(3)	C18	N22	1.318(5)
	C 6	C7	1.403(4)	N19	C20	1.382(4)
	Cć	C10	1.486(4)	C20	C21	1.333(4)
	C 7	C 8	1.373(4)	C21	C23	1.481(5)
	C 7	C16	1.529(3)	N22	H22A	0.84(4)
	C8	С9	1.379(3)	N22	H22B	0.83(3)
	C8	H8	0.89(2)	C23	C24	1.395(5)
	C10	C11	1.381(5)	C23	C28	1.387(4)
	C10	C15	1.392(4)	C24	C25	1.378(6)
	C11	C12	1.370(6)	C24	H24	0.90(3)
	C11	H11	0.95(3)	C25	C26	1.351(6)
	C12	C13	1.380(5)	C25	H25	0.92(4)
	C12	H12	0.93(4)	C26	C27	1.364(7)
	C13	C14	1.371(6)	C26	H26	0.89(4)
	C13	H13	0.91(4)	C27	C28	1.380(6)
	C14	C15	1.371(6)	C27	H27	0.91(3)
	C14	H14	0.98(3)	C28	H28	0.93(4)
	C15	H15	0.95(3)	O29	C30	1.203(8)
	C16	C17	1.527(5)	C30	C30′	1.432(6)
	C16	C21	1.515(5)			

TABLE V

Table of bond angles for compound XVII. Numbers in parentheses are estimated standard deviations in the least significant digits

 Atom 1	Atom 2	Atom 3	Angle, °	Atom 1	Atom 2	Atom 3	Angle, °
C5	N4	 C9	116.4(2)	C21	C16	H16	105(2)
Cl2	C5	N4	113.8(2)	C16	C17	C18	110.9(3)
Cl2	C5	C6	$121 \cdot 1(2)$	C16	C17	H17A	108(2)
N4	C5	C6	125.1(3)	C16	C17	H17B	113(2)
C5	C6	C7	116.2(3)	C18	C 17	H17A	109(2)
C5	C6	C 10	121.8(2)	C18	C17	H17B	112(2)
C 7	C٥	C 10	122.1(3)	H17A	C 17	H17B	104(2)
C 6	C 7	C 8	119.1(2)	C17	C18	N19	121.0(4)
C 6	C 7	C 16	120.0(3)	C17	C18	N22	118.4(3)
C 8	C 7	C 16	120.7(2)	N19	C18	N22	120.6(3)
C 7	C 8	C9	118.4(3)	C18	N19	C20	116.3(2)
C 7	C8	H8	118(1)	Cl1	C20	N19	109.6(2)
C 9	C8	H8	124(1)	C11	C20	C21	122.1(3)
C13	С9	N4	115.8(2)	N19	C20	C21	128.3(3)
C13	C9	C 8	119.5(2)	C16	C21	C20	114.5(3)
N4	C9	C8	124.7(4)	C16	C21	C23	118.1(2)
C 6	C10	C11	121.1(3)	C20	C21	C23	127.4(3)
C 6	C10	C15	120.8(4)	C18	N22	H22A	119(2)
C11	C10	C15	118.1(3)	C18	N22	H22B	113(2)
C 10	C11	C12	121.1(3)	H22A	N22	H22B	127(3)
C 10	C11	H11	116(2)	C21	C23	C24	121.8(3)
C12	C11	H11	123(2)	C21	C23	C28	121.1(3)
C 11	C12	C13	120.2(4)	C24	C23	C28	117.1(3)
C 11	C12	H12	119(2)	C23	C24	C25	120.5(3)
C13	C12	H12	121(2)	C23	C24	H24	118(2)
C 12	C13	C14	119.4(4)	C25	C24	H24	122(2)
C12	C13	H13	124(2)	C24	C25	C26	120.9(4)
C14	C13	H13	117(3)	C24	C25	H25	118(2)
C13	C14	C15	120.4(3)	C26	C25	H25	121(2)
C 13	C14	H14	116(2)	C25	C26	C27	120.2(4)
C15	C14	H14	123(2)	C25	C26	H26	117(3)
C 10	C15	C14	120.8(3)	C27	C26	H26	123(3)
C 10	C15	H15	120(2)	C26	C27	C28	119.8(4)
C 14	C15	H15	119(2)	C26	C27	H27	119(3)
C 7	C16	C 17	111.0(2)	C28	C27	H27	121(3)
C7	C16	C21	113.3(3)	C23	C28	C27	121.4(4)
C 7	C16	H16	107(1)	C23	C28	H28	121(2)
C 17	C16	C21	110.7(2)	C27	C28	H28	117(2)
C 17	C16	H16	109(2)	029	C30	C30′	116.6(5)

EXPERIMENTAL

Melting points are uncorrected. The ¹H NMR spectra were recorded on a Varian XL-100-15 spectrometer or on a Varian EM 390 spectrometer. ¹³C NMR spectra were recorded on a Varian XL-100-15 spectrometer operating at 25.2 MHz, equipped with a Varian Fourier transform unit [the spectral width was 5 000 Hz (1.25 Hz/point)], and on a Bruker CXP-300 spectrometer operating at 75.460 MHz [SW 15 000 Hz (1.85 Hz/point)]. The IR spectra were recorded on a Hitachi EPI-G3 or on a Perkin-Elmer 237. Mass spectra were recorded on an AEI MS 902 instrument.

Amination Procedure

The procedure applied has been described previously¹⁻³. The reactions at -70° C have been carried out in an acetone-carbondioxide bath. The mol. ratio potassium amide/potassium permanganate/substrate was 4.3 : 3.3 : 1. The permanganate was grinded and added at once after the appropriate time.

Preparation of Starting Materials

2,6-Dichloropyridine (I) was obtained from Aldrich Corp. and 2,6-dichloro-3-phenylpyridine (XI) was prepared according to a procedure described in the literature^{3,8}.

2-Chloro-6-phenoxypyridine (XXI)

Nine Carius tubes, each of them containing a solution of sodium hydroxide (2·4 g, 60 mmol) in water (10 ml), phenol (6·0 g, 62·5 mmol) and 2,6-dichloropyridine (1·48 g, 10 mmol) were shaken during 24 h at 140°C. The combined reaction mixtures were then strongly basified and extracted with chloroform. After drying the chloroform layer and removing the solvent, a solid (17·1 g) was obtained which was recrystallized twice from petroleum ether (60-80°C). Yield of XXI 11·10 g (60%), m.p. 87-88°C. ¹H NMR (300 MHz, deuteriochloroform, δ) 7·61 dd, (1 H, H-4, $J = 7\cdot9$); 7·40, 7·24, 7·16 (5 H, H-Ph); 7·03 d, (1 H, H-3, $J = 7\cdot7$); 6·74 d, (1 H, H-5, $J = 8\cdot4$). MS: m/e = 205 (Cl = 35). For C₁₁H₈ClNO (205·6) calculated: 64·24% C, 3·92 H%; found: 64·21% C, 3·94% H.

Identification of Isolated Product from Reaction of I with Potassium Amide/Liquid Ammonia Analysis of the reaction mixture by TLC (silicagel/petroleum ether (60-80°C)-ethyl acetate, 4:1) gave VI (R_F 0.69), I (R_F 0.63), VIII (R_F 0.53) and VII (R_F 0.44). They were isolated by preparative TLC.

2,2',6,6'-*Tetrachloro*-4,4'-*bipyridyl* (VI): m.p. 260–261°C (ethanol-ethyl acetate). ¹H NMR (hexadeuterioacetone, δ) 7.98 s, H-3,5,3',5'). MS: accurate mass (-4 Cl); calculated for C₁₀H₄N₂ 152.0374; found 152.0378. For C₁₀H₄Cl₄N₂ (293.9) calculated: 40.85% C, 1.37% H; found: 41.15% C, 0.96% H.

2,2',6-*Trichloro*-4,4'-*bipyridyl* (VII): m.p. $180 \cdot 5 - 181 \cdot 5^{\circ}$ C (ethanol). ¹H NMR (hexadeuteriodimethylsulfoxide, δ) 8.58 d, (1 H, H-6', $J = 5 \cdot 1$); 8.13 s, (3 H, H-3,5,3'); 7.95 d, (1 H, H-5', $J = 5 \cdot 1$; $J_{3',5'} = 1 \cdot 5$). MS: accurate mass (-3 Cl); calculated for C₁₀H₅N₂ 153.04527; found 153.04531. For C₁₀H₅Cl₃N₂ (259.5) calculated: 46.28% C, 1.94% H; found: 46.30% C, 2.03% H.

2,2',6,6'-Tetrachloro-4,3'-bipyridyl (VIII): m.p. $154 \cdot 0 - 155 \cdot 0^{\circ}$ C (ethanol). ¹H NMR (hexadeuterioacetone, δ) 8.05 d, (1 H, H-4', $J = 7 \cdot 8$); 7.67 s, (2 H, H-3, 5); 7.65 d, (1 H, H-5', $J = 7 \cdot 8$). MS: accurate mass (-4 Cl); calculated for C₁₀H₄N₂ 152 \cdot 0374; found: 152 \cdot 0374. For C₁₀H₄Cl₄. N₄ (321.9) calculated: 40.85% C, 1.37% H; found: 41.14% C, 1.67% H.

Reaction of *I* with potassium Amide/Liquid Ammonia, Followed by Treatment with Potassium Permanganate

Analysis of the reaction mixture by TLC (silicagel/petroleum ether $(60-80^{\circ}C)$ -ethyl acetate 4 : 1) gave I (R_F 0.65), X (R_F 0.18) and traces of VI, VII and VIII. They were isolated by preparative TLC and identified with authentic samples.

4-Amino-2,6-dichloropyridine (X): m.p. $175-176^{\circ}$ C. Mixed m.p. with an authentic sample⁹ is $175-176^{\circ}$ C. IR (KBr): 3 460, 3 300 (NH₂). ¹H NMR (hexadeuterioacetone, δ) 6.62 s, (H-3, 5); 6.10 br, (NH₂). For C₅H₄Cl₂N₂ (163.0) calculated: 36.38% C, 2.47% H; found: 37.06% C, 2.37% H.

Reaction of XI with Potassium Amide/Liquid Ammonia

Analysis of the reaction mixture by TLC (silicagel/petroleum ether $(60-80^{\circ}C)$ -ethyl acetate 17:3) gave XI (R_F 0.52), XVI (R_F 0.45), XVIII (R_F 0.10) and XVII (R_F 0.0). They were isolated by preparative TLC.

2,2',6,6'-tetrachloro-3,3'-diphenyl-4,4'-bipyridyl (XVI): m.p. 155–156°C (ethanol). ¹H NMR (deuteriochloroform, δ) 7:40–7:17 m, (6 H, H_m - Ph + H_p - Ph); 7:12 s, (2 H, H-5 + H-5'); ~6.97–6.67 br s (4 H, H_o-Ph). ¹H NMR (deuteriochloroform, -40° C, δ) ~6.98–6.78 (m, 2 H, H_o-Ph); ~6.63–6.45 m, (2 H, H_o-Ph). ¹³C NMR (deuteriochloroform, δ) 150.8 (C-2/C-4 + C-2'/C-4'); 149.3 (C-6 + C-6'); 148.5 (C-2/C-4 + C-2'/C-4'); 133.8 (C-3 + C-3'); 133.2 (C₁-Ph + C₁-Ph'); 130.1–128.8–128.3 (C_{o m p}-Ph); 124.0 (C-5 + C-5', J = 172). MS: accurate mass (-4 ³⁵Cl); calculated for C₂₂H₁₂N₂ 304.1000; found 304.1013. For C₂₂H₁₂Cl₄N₂ (446.2) calculated: 59.22% C, 2.71% H; found: 59.00% C, 2.85% H;

6'-Amino-2,2',6-trichloro-3,3'-diphenyl-4',5'-dihydro-4,4'-bipyridyl (XVII) m.p. $215-216^{\circ}$ C (ethanol). IR (chloroform): 3 500, 3 400 (NH₂). ¹H NMR (deuteriochloroform, δ) 7.43-7.03 m, (11 H, H-5 + H-Ph); 6.75-6.55 br s, (2 H, NH₂); 3.80 dd, (1 H, H-4', J = 2.4; J = 9.0); 2.68 dd, (1 H, H-5', J = 9.0; J = 16.1); 2.20 dd (1 H, H-5', J = 2.4; J = 16.1). ¹³C NMR (deuteriochloroform, δ) 158.3 (C-4); 154.6 (C-6'); 150.3, 150.1 (C-2 + C-6); 138.6, 137.6 (C-5 + C-5'); 134.8, 134.3 (C₁-Ph + C₁-Ph'); 129.1, 129.0, 128.8, 128.7, 128.1, 127.3 (C_{0,m,p}-Ph + C_{0,m,p}-Ph'); 121.7 (C-5, J = 170); 114.3 (C-2'); 39.7 (C-4', J = 138); 32.8 (C-5', J = 131). MS: accurate mass; calculated for C₂₂H₁₆N₃Cl₃ (Cl = 35) 427.0395; found 427.0410. For C₂₂H₁₆Cl₃N₃ (427.0) calculated: 61.62% C, 3.76% H; found: 61.43% C, 3.64% H;

2,2',6-*Trichloro*-N',4',5',6'-*tetrahydro*-6'-oxo-3,3'-*diphenyl*-3,4'-*bipyridyl* (XVIII): m.p. 200 to 201°C (ether, -30° C, dried in vacuo at 100°C). IR (chloroform) 3 490 (NH), 1 695 (C=O). ¹H NMR (deuteriochloroform, δ) 8·30 br s, (1 H, NH); 7·57 s, (1 H, H-4); 7·50-7·15 m, (10 H, H-Ph + H-Ph'); 4·50 dd, (1 H, H-4', $J = 3 \cdot 6; J = 7 \cdot 2$); 3·14 dd, (H-5', $J = 7 \cdot 2; J = 16\cdot8$); 2·89 dd, (H-5', $J = 3 \cdot 6; J = 16\cdot8$). ¹³C NMR (deuteriochloroform, δ) 167·8 (C-6'); 147·8, 147·4 (C-2 + C-6); 140·1 (C-4, J = 162); 136·6, 135·9 (C-5, C₁-Ph, C₁-Ph'); 132·7 (C-3); 129·2, 128·9, 128·8, 128·6, 128·4, 128·1 (C_{o m p}-Ph + C_{o m p}-Ph'); 124·3 (C-3'); 114·2 (C-2'); 40·2 (C-4', J = 135); 36·6 (C-5', J = 127). MS: accurate mass (-3 Cl); calculated 328·1184; found 323·1178. For C₂₂H₁₅Cl₃N₂O (429·7) calculated: 61·49% C, 3·52% H; found: 61·81% C, 3·67% H.

Reaction of XI with Potassium Amide/Liquid Ammonia, Followed by Treatment with Potassium Permanganate

Analysis of the reaction mixture by TLC (silicagel/petroleum ether $60-80^{\circ}$ C-ethyl acetate 4 : 1) gave XI (R_F 0.58), XVI (R_F 0.48) and XX (R_F 0.24). They were isolated by preparative TLC.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

2324

4-Amino-2,6-dichloro-3-phenylpyridine (XX): m.p. $147-148^{\circ}$ C (heptane). IR (KBr): 3 460, 3 380 (NH₂). ¹H NMR (deuteriochloroform, δ) 7·53-7·17 m, (5 H, H-Ph); 6·60 s, (1 H, H-5); 4·32 br s, (2 H, NH₂). ¹³C NMR (deuteriochloroform, δ) 154·5 (C-4); 149·4, 149·0 (C-2, C-6); 132·9 (C₁-Ph); 129·8, 129·4, 128·8 (C_{0,m,p}-Ph); 119·9 (C-3); 107·7 (C-5). MS: accurate mass; calculated for C₁₁H₈Cl₂N₂ 238·0064 (Cl = 35); found 238·0061. For C₁₁H₈Cl₂N₂ (238·0) calculated: 55·25% C, 3·37% H; found: 55·11% C, 3·36% H.

Reaction of XXI with Potassium Amide/Liquid Ammonia, Followed by Treatment with Potassium Permanganate

Analysis of the reaction mixture by TLC (silicagel/chloroform-methanol 39:1) gave XXIII $(R_F \ 0.59)$, XXI $(R_F \ 0.94)$ and XXIV $(R_F \ 0.23)$. They were isolated by preparative TLC.

4-Amino-2-chloro-6-phenoxypyridine (XXIII): m.p. $92\cdot 0-92\cdot 5^{\circ}$ C (hexane-chloroform). IR (chloroform): 3 500, 3 400 (NH₂). ¹H NMR (deuteriochloroform, δ) 7.42–7.03 m, (5 H, H-Ph); 6.28 s, (1 H, H-3, $J_{3,5} = 1.6$); 5.83 s, (1 H, H-5, $J_{3,5} = 1.6$); 4.33 br s, (2 H, NH₂). ¹³C NMR (deuteriochloroform, δ) 164.1 (C-6); 157.5 (C₁-Ph); 154.0 (C-4); 149.6 (C-2); 129.6, 124.6, 120.8 (C_{m,p,o}-Ph); 104.8 (C-5); 93.4 (C-3). MS: accurate mass; calculated for C₁₁H₉ClN₂O (Cl = 35) 220.0404; found 220.0407. For C₁₁H₉ClN₂O (220.0) calculated: 59.87% C, 4.11% H; found: 59.74% C, 4.03% H.

4-Amino-2-phenoxypyridine (XXIV) (ref.²). IR (chlorforom): 3 510, 3 410 (NH₂). ¹H NMR (deuteriochloroform, δ) 7.85 d, (1 H, H-2, $J_{2,3} = 5.7$); 7.50–7.03 m, (5 H, H-Ph); 6.27 d, (1 H, H-3, $J_{2,3} = 5.7$, $J_{3,5} = 1.8$); 6.02 s, (H-5, $J_{3,5} = 1.8$); 4.17 br s, (2 H, NH₂). MS: accurate mass; calculated for C₁₁H₁₀N₂O 186.0793; found 186.0787.

We are indebted to Mr A, van Veldhuizen for the determination of the ${}^{13}C NMR$ spectra, to Dr C. A. Landheer and to Mr C. Teunis for the mass spectrometric measurements, to Mr H. Jongejan for carrying out the microanalysis and to Mr W. Ch. Melger for advice on chromatograhhy.

REFERENCES

- 1. Den Hertog H. J., van der Plas H. C., Pieterse M. J., Streef J. W.: Rec. Trav. Chim. Pays-Bas 84, 1569 (1965).
- 2. Streef J. W., den Hertog H. J.: Rec. Trav. Chim. Pays-Bas 88, 1391 (1969).
- 3. Streef J. W., den Hertog H. J., van der Plas H. C.: J. Heterocycl. Chem. 22, 985 (1985).
- 4. Martens R. J., den Hertog H. J., van Ammers M.: Tetrahedron Lett. 1964, 3207.
- 5. Counotte-Potman A., van der Plas H. C.: J. Heterocycl. Chem. 18, 123 (1981).
- 6. Van der Plas H. C., Wozniak M.: Croat. Chem. Acta 59, 33 (1986); van der Plas H. C.: Janssen Chim. Acta. 3, 23 (1985).
- 7. Frenz B. A. and Associates: *Structure Determination Package*; College Station, Texas and Enraf-Nonius, Delft 1983.
- 8. Chase B. H., Walker J.: J. Chem. Soc. 1953, 3548.
- 9. Rousseau R. J., Robins R. K.: J. Heterocycl. Chem. 2, 196 (1965).